NiCr20TiAl | 2.4952 Material Datasheet

Unlock Exclusive Materials Data

Gain access to a wealth of materials data by joining our Materials Portal.

Register for Free or Upgrade for Full Access

Material Description

Material Number Material Number (single) Standard Range of Application Standard Status Country Successor Application temperature [°C]
2.4952 (DIN EN 10302 : 2002-09) 2.4952 DIN EN 10302 : 2002-09 DIN EN 10302 : 2002-09 replaced by DIN EN 10302 : 2008-06 Replaced Germany NiCr20TiAl ≤ 1000 1)
1) Remark: The material NiCr20TiAl, material number 2.4952, is used for creep-strength-stressed construction components in belts, sheets, rods, wires and forgings. It is listed in the material specifications of the Deutsche Luftfahrt [German Aviation] WL 2.4631-1 : 1993-8, WL 2.4631-2 : 1993-08 sowie WL 2.4631-100 : 1993-08 with the material number 2.4631. NiCr20TiAl possesses a high creep strength up to temperatures of 850 degrees C and it has very good resistance to scaling. The nickel-chrome alloy can be hardened by adding aluminium and titanium. Its resistance to corrosion resembles that of NiCr20Ti. It is used for highly-stressed construction components, for example gas turbine shovels, discs, shafts, pre-combustion chambers in diesel motors, valves, hot work tools, sledge hammers, forging saddles, pressure tools, shearing blades, screws and nuts. Processing properties: formability: good (annealed) weldability: possible, but not customary

Chemical Composition

Al [%] B [%] C [%] Co [%] Cr [%] Cu [%] Fe [%] Mn [%] Ni [%] P [%] S [%] Si [%] Ti [%]
1 - 1.8 ≤ 0.008 0.04 - 0.1 ≤ 1 18 - 21 ≤ 0.2 ≤ 1.5 ≤ 1 65 ≤ 0.02 ≤ 0.015 ≤ 1 1.8 - 2.7 1)
1) Source: DIN EN 10302 : 2002-09

Mechanical Properties

Semi-finished Product Condition Nominal Size [mm] Temperature [°C] Specimen Direction Tensile Strength [MPa] Yield Strength (0.2% offset) [MPa] Elongation A [%] Elongation A80 [%]
Bar, section, wire (drawn), wire rod precipitation hardened (+P) ≤ 160 20 longitudinally (L) ≥ 1000 ≥ 600 ≥ 18 1)2)
Sheet, strip precipitation hardened (+P) ≤ 3 20 longitudinally, transverse ≥ 1000 ≥ 600 ≥ 13 1)3)
Sheet, strip precipitation hardened (+P) 3 - 20 20 longitudinally, transverse ≥ 1000 ≥ 600 ≥ 18 1)3)
precipitation hardened (+P) 50 ≥ 595 1)4)
precipitation hardened (+P) 100 ≥ 586 1)4)
precipitation hardened (+P) 150 ≥ 577 1)4)
precipitation hardened (+P) 200 ≥ 568 1)
precipitation hardened (+P) 250 ≥ 564 1)
precipitation hardened (+P) 300 ≥ 560 1)
precipitation hardened (+P) 350 ≥ 550 1)
precipitation hardened (+P) 400 ≥ 540 1)
precipitation hardened (+P) 450 ≥ 530 1)
precipitation hardened (+P) 500 ≥ 520 1)
precipitation hardened (+P) 550 ≥ 510 1)
precipitation hardened (+P) 600 ≥ 500 1)
precipitation hardened (+P) 650 ≥ 480 1)
1) Source: DIN EN 10302 : 2002-09
2) Remark: Nominal size: thickness or diameter. Sample direction. longitudinal
3) Remark: Nominal size: thickness. Sample direction: transverse. Thickness < 3 mm: A(L=80mm), also A(L=50 mm) permissible. Thickness from 3 mm: A5. Direction of the sample longitudinal axle relating to the main rolling direction at a product thickness of < 300 mm: longitudinal, from 300 mm thickness: transverse
4) Remark: Value calculated by linear interpolation.

Physical Properties

Temperature [°C] Density [g/cm³] Young's Modulus [GPa] Mean Coefficient of Thermal Expansion (reference 20°C) [10^-6*K^-1] Thermal Conductivity [W/(m*K)] Specific Electrical Resistance [µΩm] Mean Specific Heat Capacity [kJ/(kg*K)]
20 8.2 1.24 1)2)
20 216 13 0.46 1)3)
100 212 12.1 1)3)
200 208 12.6 1)3)
300 202 13.1 1)3)
400 196 13.5 1)3)
500 189 18.5 1)3)
600 179 14 1)3)
700 161 23.9 1)3)
20 212 13 0.46 1)4)
100 207 12.1 1)4)
200 202 12.6 1)4)
300 195 13.1 1)4)
400 188 13.5 1)4)
500 180 18.5 1)4)
600 168 14 1)4)
650 160 1)4)
700 148 23.9 1)4)
800 130 1)3)
800 115 1)4)
1) Source: DIN EN 10302 : 2002-09
2) Remark: Reference values
3) Remark: Guide values. E-module dynamically determinate. The dynamically determinate E-module may especially at higher temperatures deviate from the static E-module. The estimated scatter band of the single measured values amounts to approx. ±4 %.
4) Remark: Guide values. E-module statically determinate. The statically determinate E-module may especially at higher temperatures deviate from the dynamic E-module. The estimated scatter band of the single measured values amounts to approx. ±4 %.

Creep Rupture Behaviour

Temperature [°C] Creep Tensile Strength at 10^4 h [MPa] Creep Tensile Strength at 10^5 h [MPa] 1% Creep Limit at 10^4 h [MPa] 1% Creep Limit at 10^5 h [MPa]
500 745 578 624 530 1)2)
510 711 545 608 504 1)2)
520 680 510 586 477 1)2)
530 646 480 567 450 1)3)
540 615 447 544 418 1)3)
550 582 416 523 390 1)3)
560 552 384 500 362 1)3)
570 520 354 474 334 1)3)
580 491 327 450 308 1)3)
590 462 298 425 282 1)3)
600 433 272 398 257 1)3)
610 403 247 370 230 1)3)
620 378 222 348 210 1)3)
630 351 198 326 187 1)3)
640 325 176 303 167 1)3)
650 300 157 275 149 1)3)
660 275 135 260 132 1)3)
670 251 118 240 115 1)3)
680 229 102 219 99 1)3)
690 208 88 201 85 1)3)
700 186 75 183 72 1)3)
710 170 65 167 64 1)3)
720 153 57 150 55 1)3)
730 137 49 135 47 1)3)
740 125 44 122 40 1)3)
750 114 37 106 33 1)3)
760 103 33 97 29 1)3)
770 94 29 85 24 1)3)
780 86 25 75 20 1)3)
790 78 23 68 17 1)3)
800 70 20 58 16 1)3)
1) Source: DIN EN 10302 : 2002-09
2) Remark: The values attached (reference values, for information only) are avarage values of the up to now collected scatter range. They are checked from time to time if further test results are available and -if necessary- corrected. It may be assumed that the lower limit of the scatter range is approx. 20 % lower than the avarage value given for the temperatures of the relevant alloys. Values for creep rupture at 10000h and 100000 h have been calculated subject to the extended time extrapolation.
3) Remark: The values attached (reference values, for information only) are avarage values of the up to now collected scatter range. They are checked from time to time if further test results are available and -if necessary- corrected. It may be assumed that the lower limit of the scatter range is approx. 20 % lower than the avarage value given for the temperatures of the relevant alloys.

Cross Reference

Material Name Country Standard
NC20TA France AIR 9165
NC20TA France NF A 35-579
2HR1 Great Britain BS 2HR1
2HR401 Great Britain BS 2HR401
2HR601 Great Britain BS 2HR601
2HR201 Great Britain BS HR201
NCF80A Japan JIS G 4902
N07080 USA ASTM B 637
NiCr20TiAl Germany DIN 17480
NiCr20TiAl Germany DIN 17742

Material Compliance

REACh RoHS
compliant, no regulated substances above 0.1% compliant, no regulated substances above 0.1% (lead) or 0.01% (cadmium)

Linear-elastic

Temperature [°C] Young's modulus [GPa] Bulk modulus [GPa] Shear modulus [GPa] Poisson's ratio
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur

Alternating stress

Temperature [°C] Stress ratio Mean stress [MPa] Alternating stress [MPa] Cycles
blur blur blur blur blur
blur blur blur blur blur
blur blur blur blur blur

Yield strength

Temperature [°C] 0.1% Proof strength [MPa] 0.2% Proof strength [MPa] Yield strength [MPa]
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur

Electrical resistivity

Temperature [°C] Specific electrical resistance [µΩm]
blur blur

Coefficient thermal expansion

Related Temperature [°C] Temperature [°C] Coefficient thermal expansion [10^-6*K^-1]
blur blur blur
blur blur blur
blur blur blur
blur blur blur

Specific heat

Temperature [°C] Specific heat [kJ/(kg*K)]
blur blur

Density

Temperature [°C] Density [g/cm³]
blur blur

Tensile strength

Temperature [°C] Tensile strength [MPa]
blur blur

Thermal conductivity

Temperature [°C] Thermal conductivity [W/(m*K)]
blur blur
blur blur
blur blur
blur blur

Classification

WIAM Material Treatment Semi-finished product Dimension [mm] Load type Failure criteria Rolling direction Maximum stress [MPa] Strain at maximum stress [%] Source description
blur blur blur blur blur blur blur blur blur blur

Designation

Designation Material number Source
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur
blur blur blur

Yield strength

Temperature [°C] 0.1% Proof strength [MPa] 0.2% Proof strength [MPa] Yield strength [MPa]
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur

Classification

WIAM Material Treatment Semi-finished product Dimension [mm] Load type Failure criteria Rolling direction Maximum stress [MPa] Strain at maximum stress [%] Source description
blur blur blur blur blur blur blur blur blur blur

Yield strength

Temperature [°C] 0.1% Proof strength [MPa] 0.2% Proof strength [MPa] Yield strength [MPa]
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur

Tensile strength

Temperature [°C] Tensile strength [MPa]
blur blur

Classification

WIAM Material Treatment Semi-finished product Dimension [mm] Load type Failure criteria Rolling direction Maximum stress [MPa] Strain at maximum stress [%] Source description
blur blur blur blur blur blur blur blur blur blur

Yield strength

Temperature [°C] 0.1% Proof strength [MPa] 0.2% Proof strength [MPa] Yield strength [MPa]
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur

Tensile strength

Temperature [°C] Tensile strength [MPa]
blur blur

Classification

WIAM Material Treatment Semi-finished product Dimension [mm] Load type Failure criteria Rolling direction Maximum stress [MPa] Strain at maximum stress [%] Source description
blur blur blur blur blur blur blur blur blur blur

Yield strength

Temperature [°C] 0.1% Proof strength [MPa] 0.2% Proof strength [MPa] Yield strength [MPa]
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur
blur blur blur blur

Tensile strength

Temperature [°C] Tensile strength [MPa]
blur blur

Classification

WIAM Material Treatment Semi-finished product Dimension [mm] Load type Failure criteria Rolling direction Maximum stress [MPa] Strain at maximum stress [%] Source description
blur blur blur blur blur blur blur blur blur blur